Abstract

Chemotherapy-induced peripheral neuropathy (CIPN) is a persistent and irreversible side effect of antineoplastic agents. Patients with CIPN usually show chronic pain and sensory deficits with glove-and-stocking distribution. However, whether spinal neuronal microRNA (miR)-124 is involved in cisplatin-induced peripheral neuropathy remains to be studied. In this study, miR-124 was significantly reduced in the spinal dorsal horn in CIPN mice. Overexpression of neuronal miR-124 induced by injecting adeno-associated virus with neuron-specific promoter into the spinal cord of mice prevented the development of mechanical allodynia, sensory deficits, and the loss of intraepidermal nerve fibers induced by cisplatin. Meanwhile, cisplatin-induced M1 microglia activation and the release of proinflammatory cytokines were significantly inhibited by overexpression of neuronal miR-124. Furthermore, electroacupuncture (EA) treatment upregulated miR-124 expression in the spinal dorsal horn of CIPN mice. Interestingly, downregulation of spinal neuronal miR-124 significantly inhibited the regulatory effect of EA on CIPN and microglia activity as well as spinal neuroinflammation induced by cisplatin. These results demonstrate that spinal neuronal miR-124 is involved in the prevention and treatment of EA on cisplatin-induced peripheral neuropathy in mice. Our findings suggest that spinal neuronal miR-124 might be a potential target for EA effect, and we provide, to our knowledge, a new experimental basis for EA prevention of CIPN.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call