Abstract

Metabotropic glutamate receptor 5 (mGluR5) is an excitatory G-protein-coupled receptor (GPCR) present in the spinal cord dorsal horn (SCDH) where it has a well-established role in pain. In addition to its traditional location on the cytoplasmic membrane, recent evidence shows that these receptors are present intracellularly on the nuclear membrane in the spinal cord dorsal horn and are implicated in neuropathic pain. Nuclear mGluR5 is a functional receptor that binds glutamate entering the cell through the neuronal glutamate transporter (GT) EAAT3 and activates transcription factor c-fos, whereas plasma membrane mGluR5 is responsible for c-jun activation. Here, we extend these findings to a model of inflammatory pain using complete Freund's adjuvant (CFA) and show that nuclear mGluR5 is also upregulated in the spinal cord dorsal horn following inflammation. We also show that pretreatment with an excitatory amino acid transporter (EAAT) inhibitor attenuates pain and decreases Fos, but not Jun, expression in complete Freund's adjuvant rats. In contrast, selective glial glutamate transporter inhibitors are pronociceptive and increase spinal glutamate concentrations. Additionally, we found that permeable mGluR5 antagonists are more effective at attenuating pain and Fos expression than nonpermeable group I mGluR antagonists. Taken together, these results suggest that under inflammatory conditions, intracellular mGluR5 is actively involved in the relay of nociceptive information in the spinal cord.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call