Abstract

Impaired rate-dependent depression (RDD) of the Hoffman reflex is associated with reduced dorsal spinal cord potassium chloride cotransporter expression and impaired spinal γ-aminobutyric acid type A receptor function, indicative of spinal inhibitory dysfunction. We have investigated the pathogenesis of impaired RDD in diabetic rodents exhibiting features of painful neuropathy and the translational potential of this marker of spinal inhibitory dysfunction in human painful diabetic neuropathy. Impaired RDD and allodynia were present in type 1 and type 2 diabetic rats but not in rats with type 1 diabetes receiving insulin supplementation that did not restore normoglycemia. Impaired RDD in diabetic rats was rapidly normalized by spinal delivery of duloxetine acting via 5-hydroxytryptamine type 2A receptors and temporally coincident with the alleviation of allodynia. Deficits in RDD and corneal nerve density were demonstrated in patients with painful diabetic neuropathy compared with healthy control subjects and patients with painless diabetic neuropathy. Spinal inhibitory dysfunction and peripheral small fiber pathology may contribute to the clinical phenotype in painful diabetic neuropathy. Deficits in RDD may help identify patients with spinally mediated painful diabetic neuropathy who may respond optimally to therapies such as duloxetine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.