Abstract

1. Negative intermediary cord potentials and the equivalent field potentials were recorded from the surface or within the monkey lumbosacral spinal cord in response to stimulation of myelinated afferent fibers in cutaneous or mixed nerves of the hindlimb. 2. Cord potentials resembling the N1 and N2 potentials described in the cat spinal cord were found but, in addition, activation of small myelinated fibers produced a later potential named here the N3-wave. By use of a subtraction technique, it is estimated that the N3-wave has a latency of 11.4 (+/- 3.5 SD) ms from the time of arrival of the volley in the largest affs at 9 (+/- 3) ms after its onset, and the wave lasts 23 (+/- 5.7) ms. 3. The N3-wave is not lost following spinal cord transection, but may instead be enhanced. It is thus due to neural circuitry intrinsic to the lumbosacral spinal cord. 4. The longitudinal distribution of the N3-wave is similar to that of the N1- and N2-waves. 5. The field potential associated with the N3-wave and recorded from within the spinal cord has two negative foci in some animals: near the dorsalmost part of the dorsal horn and in an area equivalent to Rexed's laminae IV-VI. The field potential reverses in sign in the ventral horn. 6. The N3-wave is evoked by Adelta fibers. This was shown by grading the stimulus strength, by measuring the conduction delay for producing the wave when stimuli are applied either proximally or distally on the sural nerve, and by showing that the N3-wave persists when the Aalphabeta fibers are anodally blocked. 7. There is often a late burst discharge in spinal neurons, including spinothalamic tract neurons, which can be attributed to Adelta fibers and which corresponds in time to the N3-wave. 8. It is proposed that the N3-wave can be used as a monitor of the central effects of Adelta fibers in the spinal cord.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call