Abstract

In the present study we focused our attention on the role of spinal cord-muscle interactions in the development of muscle and spinal cord cells. Four experimental approaches were used: 1) muscle fiber-spinal cord co-culture; 2) chronic spinal cord stimulation in chick embryos; 3) direct electrical stimulation of the denervated chick muscle; 4) skeletal muscle transplantation in close apposition to the spinal cord in chick embryos. The characteristics of mATPase and energetic metabolism enzyme activities and of myosin isoform expression were used as markers for fiber types in two peculiar muscles, the fast-twitch PLD and the slow-tonic ALD. In vitro, in the absence of neurons, myoblasts can express some characteristics of either slow or fast muscle types according to their origin, while in the presence of neurons, muscle fiber differentiation seems to be related to the spontaneous rhythm delivered by the neurons. The in ovo experiments of chronic spinal cord stimulation demonstrate that the differentiation of the fast and slow muscle features appears to be rhythm dependent. In the chick, direct stimulation of denervated muscles shows that the rhythm of the muscle activity is also involved in the control of muscle properties. In chick embryos developing ALD, the changes induced by modifications of muscle tension demonstrate that this factor also influences muscle development. Other experiments show that muscle back-transplantation can alter the early spinal cord development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.