Abstract
Brain and spinal cord injuries have devastating consequences on quality of life but are challenging to assess experimentally due to the traumatic nature of such injuries. Finite element human body models (HBM) have been developed to investigate injury but are limited by a lack of biofidelic spinal cord implementation. In many HBM, brain models terminate with a fixed boundary condition at the brain stem. The goals of this study were to implement a comprehensive representation of the spinal cord into a contemporary head and neck HBM, and quantify the effect of the spinal cord on brain deformation during simulated impacts. Spinal cord tissue geometries were developed, based on 3D medical imaging and literature data, meshed, and implemented into the GHBMC 50th percentile male model. The model was evaluated in frontal, lateral, rear, and oblique impact conditions, and the resulting maximum principal strains in the brain tissue were compared, with and without the spinal cord. A new cumulative strain curve metric was proposed to quantify brain strain distribution. Presence of the spinal cord increased brain tissue strains in all simulated cases, owing to a more compliant boundary condition, highlighting the importance of the spinal cord to assess brain response during impact.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.