Abstract

Inter-limb reflexes play an important role in coordinating behaviors involving different limbs. Previous studies have demonstrated that human elbow muscles express an inter-limb stretch reflex at long-latency (50–100 ms), a timing consistent with a trans-cortical linkage. Here we probe for inter-limb stretch reflexes in the shoulder muscles of human participants. Unexpected torque pulses displaced one or both shoulders while participants adopted a steady posture against background torques. The results demonstrated inter-limb stretch reflexes occurring at short-latency for both shoulder extensors and flexors; the rapid timing (36–50 ms) must involve a spinal linkage for the two arms. Inter-limb stretch reflexes were also observed at long-latency yet they were opposite to the preceding short-latency; when the short-latency stretch reflex was excitatory then the long-latency stretch reflex was inhibitory and vice versa. Comparing the responses to contralateral arm displacement to those during simultaneous displacement of both arms revealed that inhibitory inter-limb stretch reflexes are independent of within-limb stretch reflexes, but that excitatory inter-limb stretch reflexes are suppressed by within-limb stretch reflexes. Our results provide the first demonstration of short-latency inter-limb stretch reflexes in the upper limb of humans and reveal interacting spinal circuits for within-limb and inter-limb stretch reflexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.