Abstract

Bestrophin-1 and anoctamin-1 are members of the calcium-activated chloride channels (CaCCs) family and are involved in inflammatory and neuropathic pain. However, their role in pain hypersensitivity induced by REM sleep deprivation (REMSD) has not been studied. This study aimed to determine if anoctamin-1 and bestrophin-1 are involved in the pain hypersensitivity induced by REMSD. We used the multiple-platform method to induce REMSD. REM sleep deprivation for 48 h induced tactile allodynia and a transient increase in corticosterone concentration at the beginning of the protocol (12 h) in female and male rats. REMSD enhanced c-Fos and α2δ-1 protein expression but did not change activating transcription factor 3 (ATF3) and KCC2 expression in dorsal root ganglia and dorsal spinal cord. Intrathecal injection of CaCCinh-A01, a non-selective bestrophin-1 blocker, and T16Ainh-A01, a specific anoctamin-1 blocker, reverted REMSD-induced tactile allodynia. However, T16Ainh-A01 had a higher antiallodynic effect in male than female rats. In addition, REMSD increased bestrophin-1 protein expression in DRG but not in DSC in male and female rats. In marked contrast, REMSD decreased anoctamin-1 protein expression in DSC but not in DRG, only in female rats. Bestrophin-1 and anoctamin-1 promote pain and maintain tactile allodynia induced by REM sleep deprivation in both male and female rats, but their expression patterns differ between the sexes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.