Abstract

Spinal brain-derived neurotrophic factor (BDNF) is necessary and sufficient for certain forms of long-lasting phrenic motor facilitation (pMF). BDNF elicits pMF by binding to its high-affinity receptor, tropomyosin receptor kinase B (TrkB), on phrenic motor neurons, potentially activating multiple downstream signaling cascades. Canonical BDNF/TrkB signaling includes the 1) Ras/RAF/MEK/ERK MAP kinase, 2) phosphatidylinositol 3-kinase (PI3K)/Akt, and 3) PLCγ/PKC pathways. Here we demonstrate that spinal BDNF-induced pMF requires PLCγ/PKCθ in normal rats but not MEK/ERK or PI3K/Akt signaling. Cervical intrathecal injections of MEK/ERK (U0126) or PI3K/Akt (PI-828; 100 μM, 12 μl) inhibitor had no effect on BDNF-induced pMF (90 min after BDNF; U0126 + BDNF: 59 ± 14%, PI-828 + BDNF: 59 ± 8%, inhibitor vehicle + BDNF: 56 ± 7%; all P ≥ 0.05). In contrast, PKCθ inhibition with theta inhibitory peptide (TIP; 0.86 mM, 12 μl) prevented BDNF-induced pMF (90 min after BDNF; TIP + BDNF: -2 ± 2%; P ≤ 0.05 vs. other groups). Thus BDNF-induced pMF requires downstream PLCγ/PKCθ signaling, contrary to initial expectations.NEW AND NOTEWORTHY We demonstrate that BDNF-induced pMF requires downstream signaling via PKCθ but not MEK/ERK or PI3K/Akt signaling. These data are essential to understand the sequence of the cellular cascade leading to BDNF-dependent phrenic motor plasticity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.