Abstract

We examined the neural mechanisms responsible for plantar flexion torque changes at different joint positions. Nine subjects performed maximal voluntary contractions (MVC) at 6 ankle-knee angle combinations [3 ankle angles (dorsiflexion, anatomic position, plantar flexion) and 2 knee angles (flexion, full extension)]. Neural mechanisms were determined by V-wave, H-reflex (at rest and during MVC), and electromyography during MVC (RMS), normalized to the muscle compound action potential (V/Msup, Hmax/Mmax, Hsup Msup and RMS/Msup) and voluntary activation (VA), while muscle function was assessed by doublet amplitude. MVC and doublet amplitude were significantly lower at plantar flexion (P < 0.01), while VA was significantly lower at dorsiflexion and full knee extension (P < 0.05). V/Msup and RMS/Msup were significantly lower at knee extension (P < 0.01), while Hsup/Msup was not affected by joint angle. These results indicate that joint positions leading to muscle lengthening produce reduced neural drive, due mainly to supraspinal mechanisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.