Abstract

The present study investigated the involvement of the adenosine 3′5′-cyclic monophosphate-dependent protein kinase A (cAMP-PKA) pathway in the activation of the crossed-phrenic pathways after left C2 spinal cord hemisection. Experiments were conducted on left C2 spinal cord hemisected, anesthetized, vagotomized, pancuronium paralyzed, and artificially ventilated male Sprague–Dawley rats. One week post-injury, the ipsilateral phrenic nerve exhibited no respiratory-related activity indicating a functionally complete hemisection. Intrathecal spinal cord administration of the cAMP analog, 8-Br-cAMP at the level of the phrenic nucleus resulted in an enhancement of contralateral phrenic nerve output and a restoration of respiratory-related activity in the phrenic nerve ipsilateral to the hemisection. Furthermore, pre-treatment with Rp-8-Br-cAMP, a PKA inhibitor, abolished the effects of 8-Br-cAMP. These results suggest that PKA activation is necessary for the cAMP-mediated respiratory recovery following high cervical spinal cord injury and that activation of intracellular signaling cascades may represent an important strategy for improving respiratory function after spinal cord injury.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call