Abstract

The regulation of sucrose-phosphate synthase (SPS) and nitrate reductase (NR) activities from mature spinach (Spinacia oleracea L.) leaves share many similarities in vivo and in vitro. Both enzymes are light/dark modulated by processes that involve, at least in part, reversible protein phosphorylation. Experiments using desalted crude extracts show that the ATP-dependent inactivation of spinach SPS and NR is sensitive to inhibition by glucose-6-phosphate. Also, a synthetic peptide homolog of the spinach SPS phosphorylation site inhibits the ATP-dependent inactivation of both enzymes with a similar concentration dependence. We have addressed the possibility that SPS and NR are regulated by the same protein kinase by partially purifying the protein kinases involved. Three unique kinase activities can be separated by anion-exchange and size-exclusion chromatography. Each peak of activity has a different substrate specificity. By gel filtration, they have apparent molecular masses of approximately 45, 60, and 150 kD. Additionally, the activities of the two smaller kinases are dependent on micromolar concentrations of Ca2+, whereas the 150-kD kinase is not. Finally, the 150-kD kinase has a subunit molecular mass of about 65 kD as determined by renaturing the kinase activity in situ following sodium dodecyl sulfate-polyacrylamide gel electrophoresis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.