Abstract

DCAF16 is a substrate recognition component of Cullin-RING E3 ubiquitin ligases that can be targeted by electrophilic PROTACs (proteolysis targeting chimeras) to promote the nuclear-restricted degradation of proteins. The endogenous protein substates of DCAF16 remain unknown. In this study, we compared the protein content of DCAF16-wild type and DCAF16-knockout (KO) cells by untargeted mass spectrometry-based proteomics, identifying the Tudor domain-containing protein Spindlin-4 (SPIN4) as a protein with a level that was substantially increased in cells lacking DCAF16. Very few other proteomic changes were found in DCAF16-KO cells, pointing to a specific relationship between DCAF16 and SPIN4. Consistent with this hypothesis, we found that DCAF16 interacts with and ubiquitinates SPIN4, but not other related SPIN proteins, and identified a conserved lysine residue unique to SPIN4 that is involved in DCAF16 binding. Finally, we provide evidence that SPIN4 preferentially binds trimethylated histone H3K4 over other modified histone modifications. These results, taken together, indicate that DCAF16 and SPIN4 form a dedicated E3 ligase-substrate complex that regulates the turnover and presumed functions of SPIN4 in human cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.