Abstract

Bigravity is one of the natural extensions of general relativity and contains an additional massive spin-2 field which can be a good candidate for dark matter. To discuss the production of spin-2 dark matter, we study fixed point solutions of the background equations for axisymmetric Bianchi type-I Universes in two bigravity theories without Boulware-Deser ghost, i.e., Hassan-Rosen bigravity and Minimal Theory of Bigravity. We investigate the local and global stability of the fixed points and classify them. Based on the general analysis, we propose a new scenario where spin-2 dark matter is produced by the transition from an anisotropic fixed point solution to isotropic one. The produced spin-2 dark matter can account for all or a part of dark matter and can be directly detected by laser interferometers in the same way as gravitational waves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call