Abstract

BackgroundSpindlin1 (SPIN1), a protein highly expressed in several human cancers, has been correlated with tumorigenesis and development. Alterations of drug metabolizing enzymes and drug transporters are major determinants of chemoresistance in tumor cells. However, whether the metabolizing enzymes and transporters are under the control of SPIN1 in breast cancer chemoresistance has not yet been defined.MethodsSPIN1 expression in breast cancer cells and tissues was detected by quantitative real-time PCR (qRT-PCR) and immunohistochemistry. Chemosensitivity assays in vitro and in vivo were performed to determine the effect of SPIN1 on Adriamycin resistance. Downstream effectors of SPIN1 were screened by microarray and confirmed by qRT-PCR and Western blot. Luciferase assay and Western blot were used to identify miRNAs regulating SPIN1.ResultsWe showed that SPIN1 was significantly elevated in drug-resistant breast cancer cell lines and tissues, compared with the chemosensitive ones. SPIN1 enhanced Adriamycin resistance of breast cancer cells in vitro, and downregulation of SPIN1 by miRNA could decrease Adriamycin resistance in vivo. Mechanistically, drug metabolizing enzymes and transporter CYP2C8, UGT2B4, UGT2B17 and ABCB4 were proven to be downstream effectors of SPIN1. Notably, SPIN1 was identified as a direct target of the miR-148/152 family (miR-148a-3p, miR-148b-3p and miR-152-3p). As expected, miR-148a-3p, miR-148b-3p or miR-152-3p could increase Adriamycin sensitivity in breast cancer cells in vitro. Moreover, high expression of SPIN1 or low expression of the miR-148/152 family predicted poorer survival in breast cancer patients.ConclusionsOur results establish that SPIN1, negatively regulated by the miR-148/152 family, enhances Adriamycin resistance in breast cancer via upregulating the expression of drug metabolizing enzymes and drug transporter.

Highlights

  • Spindlin1 (SPIN1), a protein highly expressed in several human cancers, has been correlated with tumorigenesis and development

  • We find that SPIN1 increases breast cancer Adriamycin resistance via enhancing the expression of drug metabolizing enzymes and transporter CYP2C8, UGT2B4, UGT2B17 and ABCB4

  • SPIN1 was elevated in drug-resistant breast cancer cells and tissues We have confirmed that the Adriamycin resistant breast cancer MCF-7/ADM cells displayed a more than 24-fold greater resistance to Adriamycin than the parental MCF-7 cells (Fig. 1a)

Read more

Summary

Introduction

Spindlin (SPIN1), a protein highly expressed in several human cancers, has been correlated with tumorigenesis and development. Alterations of drug metabolizing enzymes and drug transporters are major determinants of chemoresistance in tumor cells. Whether the metabolizing enzymes and transporters are under the control of SPIN1 in breast cancer chemoresistance has not yet been defined. The generation or acquisition of cancer chemoresistance is not clear understood but has been attributed to alterations in many molecular pathways, which include drug metabolizing enzymes and drug transporter genes [2]. Recent evidences showed that human Spindlin (SPIN1) was highly expressed in ovarian cancer and liposarcoma, and may be implicated in tumorigenesis and development [8,9,10]. Whether SPIN1 could regulate the drug metabolizing enzymes and transporters has not been defined. We hypothesize that SPIN1 may be regulated by other miRNAs

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call