Abstract

We present a theory of spin waves in a noncondensed gas of spin-1 bosons and provide both analytic calculations of the linear theory and full numerical simulations of the nonlinear response. We highlight the role of spin-dependent contact interactions in the dynamics of a thermal gas. Although these interactions are small compared to the thermal energy, they set the scale for low-energy, long-wavelength spin waves. In particular, we find that the polar state of {sup 87}Rb is unstable to collisional mixing of magnetic sublevels even in the normal state. We augment our analytic calculations by providing full numerical simulations of a trapped gas, explicitly demonstrating this instability. Further, we show that for strong antiferromagnetic interactions, the polar gas is unstable. Finally, we explore coherent population dynamics in a collisionless transversely polarized gas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.