Abstract

The propagation of spin waves in magnetically ordered systems has emerged as a potential means to shuttle quantum information over large distances. Conventionally, the arrival time of a spin wavepacket at a distance, d, is assumed to be determined by its group velocity, vg. Here, we report time-resolved optical measurements of wavepacket propagation in the Kagome ferromagnet Fe3Sn2 that demonstrate the arrival of spin information at times significantly less than d/vg. We show that this spin wave "precursor" originates from the interaction of light with the unusual spectrum of magnetostatic modes in Fe3Sn2. Related effects may have far-reaching consequences toward realizing long-range, ultrafast spin wave transport in both ferromagnetic and antiferromagnetic systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.