Abstract

We present an analytical calculation of the spin-wave spectrum of the Jahn-Teller system LaTiO3. The calculation includes all superexchange couplings between nearest-neighbor Ti ions allowed by the space-group symmetries: The isotropic Heisenberg couplings and the antisymmetric (Dzyaloshinskii-Moriya) and symmetric anisotropies. The calculated spin-wave dispersion has four branches, two nearly degenerate branches with small zone-center gaps and two practically indistinguishable high-energy branches having large zone-center gaps. The two lower-energy modes are found to be in satisfying agreement with neutron-scattering experiments. In particular, the experimentally detected approximate isotropy in the Brillouin zone and the small zone-center gap are well reproduced by the calculations. The higher-energy branches have not been detected yet by neutron scattering but their zone-center gaps are in satisfying agreement with recent Raman data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.