Abstract

Spin-wave propagation in microfabricated 20 nm thick, 2.5 μm wide Yttrium Iron Garnet (YIG) waveguides is studied using propagating spin-wave spectroscopy (PSWS) and phase resolved micro-focused Brillouin Light Scattering (μ-BLS) spectroscopy. We demonstrate that spin-wave propagation in 50 parallel waveguides is robust against microfabrication induced imperfections and extract spin-wave propagation parameters for the Damon-Eshbach configuration in a wide range of excitation frequencies. As expected from its low damping, YIG allows for the propagation of spin waves over long distances; the attenuation lengths is 25 μm at μ0H = 45 mT. Moreover, direct mapping of spin waves by μ-BLS allows us to reconstruct the spin-wave dispersion relation and to confirm the multi-mode propagation in the waveguides, glimpsed by propagating spin-wave spectroscopy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.