Abstract

We study the stability of magnetization precessions induced in spin-transfer devices by the injection of spin-polarized electric currents. Instability conditions are derived by introducing a generalized, far-from-equilibrium interpretation of spin waves. It is shown that instabilities are generated by distinct groups of magnetostatically coupled spin waves. Stability diagrams are constructed as a function of external magnetic field and injected spin-polarized current. These diagrams show that the application of larger fields and currents has a stabilizing effect on magnetization precessions. Analytical results are compared with numerical simulations of spin-transfer-driven magnetization dynamics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call