Abstract
The two-layer Heisenberg antiferromagnet exhibits a zero temperature quantum phase transition from a disordered dimer phase to a collinear Neel phase, with long range order in the ground state. The spin-wave gap vanishes as Δ ∝ (J ⊥ – J ⊥ c) ν approaching the transition point. To account for strong correlations, the S = 1 elementary excitations triplets are described as a dilute Bose gas with infinite on-site repulsion. We apply the Brueckner diagram approach which gives the critical index ν ≈ 0 . 5. We demonstrate also that the linearised in density Brueckner equations give the mean field result ν = 1. Finally, an expansion of the Brueckner equations in powers of the density, combined with the scaling hypothesis, gives ν ≈ 0 . 67. This value agrees reasonably with that of the nonlinear O(3) σ model. Our approach demonstrates that for other quantum spin models the critical index can be different from that in the nonlinear σ model. We discuss the conditions for this to occur.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.