Abstract

The third-order optical response function of a chromophore coupled to a bath consisting of noninteracting two-level systems (TLSs) undergoing stochastic jumps is calculated. The results can be applied to a broad class of nonlinear optical techniques in single-molecule spectroscopy and bulk measurements in glasses, polymers, and mixed crystals. In the limit of many TLSs weakly coupled to the chromophore, the response can be obtained using the second-order cumulant expansion and resembles that of the Brownian oscillator model. Quantum corrections to the spectral density which accounts for the Stokes shift can be included in this limit using the fluctuation-dissipation theorem. However, the temperature dependence predicted by the two models is very different. Corrections to the cumulant expansion to fourth order in coupling strength are derived.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.