Abstract

Abstract we report the results of experiments on the spin-up of two layers of immiscible fluid with a free upper surface in a rotating cylinder over a wide range of internal Froude numbers. Observations of the evolution of the velocity field by particle tracking indicates that spin-up of the azimuthal velocity in the upper layer take much longer than in a homogeneous fluid. Initially, spin-up occurs at a rate comparable to that of homogeneous fluid but, at high internal Froude number, a second phase follows in which the remaining lative motion decays much more slowly. Quantitative comparison of these measurements to the theory of Pedlosky (1967) shows good agreement. Visualization of the interface displacement during spin-up detected the presence of transient azimuthal variations in the interface elevation over a wide range of Froude (F), Ekman (E), and Rossby (e) number. nalysis of the occurrence of the asymmetric variations using the parameter space (Q, F), where Q = E 1/2/e, suggested by the baroclinic...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.