Abstract

AbstractThe spin-up of a concentrated vortex in a liquid metal cylinder with a free surface is considered experimentally and numerically. The vortex is driven by two flow-independent magnetic body forces. A continuously applied rotating magnetic field provides the source of the angular momentum. A pulse of about one order of magnitude stronger travelling magnetic field drives a converging flow that temporarily focuses this angular momentum towards the axis of the container. A highly concentrated vortex forms that produces a funnel-shaped surface depression. We explore experimentally the duration, the depth and the conditions of formation of this funnel. Additionally, we measure the axial velocity and calculate the axisymmetric flow field of this transient vortex at a lower force magnitude. The spin-up vortex is similar to the corresponding developed time-averaged turbulent vortex driven by the same magnetic forces (Grants et al., J. Fluid Mech., vol. 616, 2008, pp. 135–152). There are two main differences. First, the maximum swirl concentration condition cannot be expressed as a constant ratio of the two driving forces. Second, a much higher degree of swirl concentration is feasible. We explain these differences as due to a much lower turbulence during the spin-up.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.