Abstract

PurposeThe purpose of this paper is to propose the situation that the existing parking automated guided vehicle (AGV) has a single walking mode, a spin forward motion mode based on a dual steering wheel driven parking AGV. In this way, the AGV can complete the 180° spin of the AGV in the process of straight forward.Design/methodology/approachA spin forward kinematics model of the dual steering wheel AGV is established, and a motion controller of the dual steering wheel AGV is designed based on the principle of model predictive control to complete the path following the spin forward motion mode.FindingsComputer simulations and laboratory tests were performed on this movement mode, which showed that the operation mode was feasible. It also verified that the mode can improve the handling efficiency, and also solved the problem that the parking space beside the wall could not be set and the site utilization was improved.Research limitations/implicationsThe controller should be further improved to make the operation smoother and more accurate.Practical implicationsThis mode has the applicability to the indoor logistics AGVs. In addition, it can improve the handling efficiency and also solved the problem that the storage space for goods beside the wall could not be set and the site utilization was improved.Social implicationsThis method can solve the problem due to the increasing number of private cars and parking spaces are hard to find. It increases the number of parking spaces and improves the utilization rate of the site. In addition, it also saves people the time to find a parking space and reduces car exhaust emissions in the process. It follows the requirements of sustainable development.Originality/valueThe studies in this paper provide AGV with more ideas on the issue of improving handling efficiency and site utilization and also solves the problem of being unable to set parking spaces when parking against the wall. In addition, this model has applicability to indoor logistics AGV and plays the same role.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.