Abstract

The nitrone 5-carbamoyl-5-methyl-1-pyrroline N-oxide (AMPO) was synthesized and characterized. Spin trapping of various radicals by AMPO was demonstrated for the first time by electron paramagnetic resonance (EPR) spectroscopy. The resulting spin adducts for each of these radicals gave unique spectral profiles. The hyperfine splitting constants for the superoxide adduct are as follows: isomer I (80%), a(nitronyl)(-)(N) = 13.0 G and a(beta)(-)(H) = 10.8 G; isomer II (20%), a(nitronyl)(-)(N) = 13.1 G, a(beta)(-)(H) = 12.5 G, and a(gamma)(-)(H) = 1.75 G. The half-life of the AMPO-O(2)H was about 8 min, similar to that observed for EMPO but significantly shorter than that of the DEPMPO-O(2)H with t(1/2) approximately 16 min. However, the spectral profile of AMPO-O(2)H at high S/N ratio is distinguishable from the spectrum of the (*)OH adduct. Theoretical analyses using density functional theory calculations at the B3LYP/6-31+G//B3LYP/6-31G level were performed on AMPO and its corresponding superoxide adduct. Calculations predicted the presence of intramolecular H-bonding in both AMPO and its superoxide adduct. The H-bonding interaction was further confirmed by an X-ray structure of AMPO, and of the novel and analogous amido nitrone 2-amino-5-carbamoyl-5-methyl-1-pyrroline N-oxide (NH(2)-AMPO). The thermodynamic quantities for superoxide radical trapping by various nitrones have been found to predict favorable formation of certain isomers. The measured partition coefficient in an n-octanol/buffer system of AMPO was similar to those of DMPO and DEPMPO. This study demonstrates the suitability of the AMPO nitrone for use as a spin trap to study radical production in aqueous systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.