Abstract

Organometallic sandwich complexes, composed of cyclic hydrocarbon ligands and transition-metal atoms, display unique physical and chemical properties. In this work, the electronic and spin transport properties of one-dimensional (1D) VBz2 ligand bimetallic sandwich complexes, VBz2–TM (TM = Cr, Mn, and Fe), are systematically investigated using density functional theory and nonequilibrium Green’s function method. The results show that all the 1D infinite molecular wires [(VBz2)TM]∞ (TM = Cr–Fe) are found to be thermodynamically stable with high binding energies (∼1.0–3.45 eV). In particular, they are predicted to be ferromagnetic half metals. Moreover, the I–V curves exhibit negative differential resistance for one, two, and three VBz2–TM wires at TM = Cr, Mn, and Fe, respectively, which is of great significance for certain electronic applications. Our findings strongly suggest that the benzene ligand bimetallic sandwich molecular wires are good candidates for potential electronics and spintronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call