Abstract

We review our recent achievements on optimization of spin injection from ferromagnetic into non-magnetic metals and characterization of spin transport properties in the non-magnetic nano-structures. We have realized the efficient spin injection by solving spin resistance mismatch problem in spin diffusion process across the interface between ferromagnetic and nonmagnetic metals. We analyzed temperature dependent spin relaxation length and time in Ag within the framework of the Elliot–Yafet mechanism based on spin–orbit interaction and momentum relaxation. The spin relaxation length in a light metal Mg is found comparable to that of Ag due to its peculiar electronic band structure in which so called spin-hotspots dramatically enhance spin relaxation. Spin relaxation properties in various metals are also quantitatively discussed. We employed commonly used Hanle effect measurements to characterize spin relaxation of spin current and reexamined both theoretically and experimentally the effect of spin absorption at the interface. The affected spatial profile of chemical potential due to the longitudinal and transverse spin absorption results in the broadened Hanle curve. All the Hanle curves both in metallic and semi-conductive materials including graphene fall into the universal scaling plot. Anatomy of spin injection properties of the junction and spin transport properties in non-magnetic metal is shown in tables.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.