Abstract

We study spin transport in normal/ferromagnetic/normal/ferromagnetic.../normal graphene superlattices, which can be realized by putting a series of magnetic insulator bars on top of a graphene sheet. Owing to magnetic proximity effect, local exchange splittings will be induced in the graphene sheet, effectively forming a magnetic graphene superlattice. The spin polarization of tunneling conductance and the magneto resistance (MR) exhibit oscillatory behavior with the gate voltage. The superlattice structure leads to an enhanced spin polarization and MR ratio, making the magnetic graphene superlattice become very promising in spintronics applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call