Abstract

In graphene-superconductor heterostructures, superconductivity and the quantum Hall effect may coexist for an experimentally accessible range of magnetic fields. When the graphene edge states are coupled to a superconductor in the presence of a Zeeman field, the charge carriers with one spin projection get transmitted while the ones with the opposite spin projection get reflected within a certain energy region. This spin-filtering effect is a consequence of the interplay between specular Andreev reflections and Andreev retro-reflections. While the edge termination of graphene and the geometrical details do matter for the charge conductance, they have little effect on the spin polarization of the charge carriers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call