Abstract

Materials with spin-momentum locked surface or interface states provide an interesting playground for studying physics and application of charge-spin current conversion. To characterize their non-equilibrium magnetic and transport properties in the presence of a time-dependent external magnetic field and a spin injection from a contact, we introduce three macroscopic variables: a vectorial helical magnetization, a scalar helical magnetization, and the conventional magnetization. We derive a set of closed dynamic equations for these variables by using the spinor Boltzmann approach with the collision terms consistent with the symmetry of spin-momentum locked states. By solving the dynamic equations, we predict several intriguing magnetic and transport phenomena which are experimentally accessible, including magnetic resonant response to an AC applied magnetic field, charge-spin conversion, and spin current induced by the dynamics of helical magnetization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.