Abstract

We investigate spin transport and accumulation in n+-Si using Heusler compound Co2FeSi/MgO/Si on insulator (SOI) devices. The magnitudes of the non-local four- and three-terminal Hanle effect signals when using Heusler compound Co2FeSi/MgO/SOI devices are larger than when using CoFe/MgO/SOI devices, whereas the preparation methods of MgO layers on SOI are exactly same in both devices. Different bias voltage dependencies on the magnitude of spin accumulation signals are also observed between these devices. Especially, Co2FeSi/MgO/SOI devices show large spin accumulation signals compared with CoFe/MgO/SOI devices in the low bias voltage region less than ∼1000 mV in which the increase of the spin polarization is expected from the estimation of the density of states in Heusler compound Co2FeSi and CoFe under spin extraction conditions. These results indicate that the species of ferromagnetic material definitely affects the magnitude and behavior of the spin signals. The use of highly polarized ferromagnets such as Heusler compounds would be important for improving the spin polarization and the magnitude of spin signals through Si channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call