Abstract
Spin transition and substitution of Fe3+ in Fe3+AlO3-bearing MgSiO3 perovskite (Pv) and post-perovskite (PPv) were examined up to 200 and 165GPa, respectively, at room temperature by X-ray emission spectroscopy (XES) and XRD. The results of XES and XRD indicate that in Pv high spin (HS) Fe3+ at the dodecahedral (A) site replaces Al at the octahedral (B) site and becomes low spin (LS) between 50 and 70GPa with pressure, while in PPv LS Fe3+ occupies the B-site and Al occupies the A-site above 80–100GPa. The Fe3+–Al coupled substitution seems to be at work in both Pv and PPv. Combining these results on Fe3+ with the recent first-principles calculations on Fe2+ in Pv and PPv, the spin transition and substitution of iron in pyrolitic lower mantle minerals are proposed. Further, their effects on iron-partitioning among the lower mantle minerals are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Physics of the Earth and Planetary Interiors
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.