Abstract

AbstractSeismic anomalies observed in Earth's deep mantle are conventionally considered to be associated with thermal and compositional anomalies, and possibly partial melt of major lower‐mantle phases. However, through deep water cycle, impacts of hydrous minerals on geophysical observables and on the deep mantle thermal state and geodynamics remain poorly understood. Here we precisely measured thermal conductivity of δ‐(Al,Fe)OOH, an important water‐carrying mineral in Earth's deep interior, to lowermost mantle pressures at room temperature. The thermal conductivity varies drastically by twofold to threefold across the spin transition of iron, resulting in an exceptionally low thermal conductivity at the lowermost mantle conditions. As δ‐(Al,Fe)OOH is transported to the lowermost mantle, its exceptionally low thermal conductivity may serve as a local thermal insulator, promoting high‐temperature anomalies and the formation of partial melt and thermal plumes at the base of the mantle, strongly influencing thermo‐chemical profiles in the region and fate of Earth's deep water cycle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.