Abstract

Exchange-coupled amorphous GdFeCo/TbFe memory layers in giant magneto-resistance (GMR) devices for spin transfer torque (STT) switching have been studied, and temperature dependence of the critical current density of the GMR devices was measured to discuss the effect of exchange-coupled bilayers as a memory layer of the thermally assisted magnetic random access memory (MRAM). The GMR devices having amorphous GdFeCo and TbFe memory bilayers with various thicknesses were prepared by magnetron sputtering and subsequent micro-fabrication processes. A pulsed current was applied to the GMR devices in order to investigate the spin transfer torque (STT) switching. The maximum magneto-resistance (MR) ratio was around 0.15%, and the coercivity of the memory bilayer increased with the TbFe thickness and decreased with elevating temperature. The critical current densities Jc to switch the memory bilayer with structure of Gd21.4 (Fe90Co10)78.6(9 nm)/Tb16Fe84 (1 nm) as low as 2.2 × 107 A cm−2 was obtained. The Jc reduced with increasing the temperature and was found to scale with the effective anisotropy Keff of GdFeCo/TbFe bilayer, which is believed to be suitable for the application of thermally assisted STT-MRAM.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call