Abstract

We have studied field- and current-driven domain-wall (DW) creep motion in a perpendicularly magnetized Co/Pt multilayer wire by real-time Kerr microscopy. The application of a dc current of density of approximately < 10(7) A/cm2 assisted only the DW creeping under field in the same direction as the electron flow, a signature of spin-transfer torque effects. We develop a model dealing with both bidirectional spin-transfer effects and Joule heating, with the same dynamical exponent mu=1/4 for both field- and current-driven creep, and use it to quantify the spin-transfer efficiency as 3.6+/-0.6 Oe cm2/MA in our wires, confirming the significant nonadiabatic contribution to the spin torque.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.