Abstract

This paper reviews spin-transfer magnetization switching in ordered alloy-based nanopillar devices. L10-ordered FePt was used for one of the earliest demonstrations of spin-transfer switching in perpendicularly magnetized systems. The behaviour of magnetization switching deviates from the predictions based on a macro-spin model, suggesting incoherent magnetization switching in the system with a large perpendicular magnetic anisotropy. The effect of a 90° spin injector on spin-transfer switching was also examined using L10-ordered FePt. Full-Heusler alloys are in another fascinating material class for spin-transfer switching because of their high-spin polarization of conduction electrons and possible small magnetization damping. A B2-ordered Co2FeAl0.5Si0.5-based device showed a low intrinsic critical current density of 9.3 × 106 A cm−2 for spin-transfer switching as well as a relatively large current-perpendicular-to-plane giant-magnetoresistance (CPP-GMR) up to ∼9%. The specific physical properties of ordered alloys may be useful for fundamental studies and applications in spin-transfer switching.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call