Abstract

We consider an agent on a fixed but arbitrary node of a known threshold network, with the task of detecting an unknown missing link. We obtain analytic formulas for the probability of success when the agent's tool is the free evolution of a single excitation on an $\mathit{XX}$ spin system paired with the network. We completely characterize the parameters, which allows us to obtain an advantageous solution. From the results emerges an optimal (deterministic) algorithm for quantum search, from which a quadratic speedup with respect to the optimal classical analog and in line with well-known results in quantum computation is gained. When attempting to detect a faulty node, the chosen setting appears to be very fragile and the probability of success too small to be of any direct use.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.