Abstract
AbstractTransition metal oxides (TMOs) are promising cathode materials for aqueous zinc ion batteries (ZIBs), however, their performance is hindered by a substantial Hubbard gap, which limits electron transfer and battery cyclability. Addressing this, we introduce a heteroatom coordination approach, using triethanolamine to induce axial N coordination on Mn centers in MnO2, yielding N‐coordinated MnO2 (TEAMO). This approach leverages the change of electronegativity disparity between Mn and ligands (O and N) to disrupt spin symmetry and augment spin polarization. This enhancement leads to the closure of the Hubbard gap, primarily driven by the intensified occupancy of the Mn eg orbitals. The resultant TEAMO exhibit a significant increase in storage capacity, reaching 351 mAh g−1 at 0.1 A g−1. Our findings suggest a viable strategy for optimizing the electronic structure of TMO cathodes, enhancing the potential of ZIBs in energy storage technology.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.