Abstract

We study the breaking of spin symmetry for the nonlinear Hartree-Fock model describing an infinite translation-invariant interacting quantum gas (fluid phase). At zero temperature and for the Coulomb interaction in three space dimensions, we can prove the existence of a unique first order transition between a pure ferromagnetic phase at low density and a paramagnetic phase at high density. Multiple first or second order transitions can happen for other interaction potentials, as we illustrate on some examples. At positive temperature T>0 we compute numerically the phase diagram in the Coulomb case. We find the paramagnetic phase at high temperature or high density and a region where the system is ferromagnetic. We prove that the equilibrium measure is unique and paramagnetic at high temperature or high density.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call