Abstract

Experimental data on the spin susceptibility of HTSC cuprates are reproduced on the basis of a spherically symmetric approach in the frustrated Heisenberg model. The inclusion of real and imaginary renormalizations in spin Green’s functions makes it possible to explain the evolution of spin excitation spectrum ω(q) and susceptibility spectrum χ(q, ω) in the range from insulator to optimal doping. In the low-frustration limit corresponding to the weakly doped mode, the saddle singularity of ω(q) and scaling of χ2D(ω) =∫d q Im χ(q, ω) are reproduced and an analytic expression is derived for the scaling function. In the strong frustration (optimal doping) mode, the stripe scenario is demonstrated; this leads to a peak of χ2D (ω) in the region of ω∼60 meV.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call