Abstract

We find that the polarization field, B_chi, obtained by scaling the weak-parallel-field magnetoresistance at different electron densities in a dilute two-dimensional electron system in (111) silicon, corresponds to the spin susceptibility that grows strongly at low densities. The polarization field, B_sat, determined by resistance saturation, turns out to deviate to lower values than B_chi with increasing electron density, which can be explained by filling of the upper electron subbands in the fully spin-polarized regime.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call