Abstract

It is shown that such phenomena as quantum correlations (interaction of space-separated quantum entities), the action of magnetic vector potential on quantum entities in the absence of magnetic field, and near-field antenna effect (the existence of superluminally propagating electromagnetic fields) may be explained by action of spin supercurrents. In case of quantum correlations between quantum entities, spin supercurrent emerges between virtual particles pairs (virtual photons) created by those quantum entities. The explanation of magnetic vector potential and near-field antenna effect is based on contemporary principle of quantum mechanics: the physical vacuum is not an empty space but the ground state of the field consisting of quantum harmonic oscillators (QHOs) characterized by zero-point energy. Using the properties of the oscillators and spin supercurrent, it is proved that magnetic vector potential is proportional to the moment causing the orientation of spin of QHO along the direction of magnetic field. The near-field antenna effect is supposed to take place as a result of action of spin supercurrent causing secondary electromagnetic oscillations. In this way, the electromagnetic field may spread at the speed of spin supercurrent. As spin supercurrent is an inertia free process, its speed may be greater than that of light, which does not contradict postulates of special relativity that sets limits to the speed of inertial systems only.

Highlights

  • The following phenomena are discussed in this work: 1) quantum correlations—mutual dependence of characteristics of wave function of so-called entangled quantum entities while there is space separation; 2) a change in characteristics of wave function of quantum entities while they are passing in the region of non-zero magnetic vector potential; 3) the near-field antenna effect—the existence near antenna of superluminally propagating electromagnetic field

  • The explanation of magnetic vector potential and near-field antenna effect is based on contemporary principle of quantum mechanics: the physical vacuum is not an empty space but the ground state of the field consisting of quantum harmonic oscillators (QHOs) characterized by zero-point energy

  • It is proved in this work that the properties of quantum correlations, the action of magnetic vector potential on quantum entities, and near-field antenna effect are determined by the properties of spin supercurrent arising between virtual photons created by quantum entities participating in these phenomena and of spin supercurrents emerging between virtual photons created by the quantum entities, on the one hand, and QHOs that constitute the physical vacuum, on the other hand

Read more

Summary

Introduction

The following phenomena are discussed in this work: 1) quantum correlations—mutual dependence of characteristics of wave function of so-called entangled quantum entities while there is space separation; 2) a change in characteristics of wave function of quantum entities while they are passing in the region of non-zero magnetic vector potential (magnetic field may be absent); 3) the near-field antenna effect—the existence near antenna (an oscillating electric dipole) of superluminally propagating electromagnetic field. It is proved in this work that the properties of quantum correlations, the action of magnetic vector potential on quantum entities, and near-field antenna effect are determined by the properties of spin supercurrent arising between virtual photons created by quantum entities participating in these phenomena and of spin supercurrents emerging between virtual photons created by the quantum entities, on the one hand, and QHOs that constitute the physical vacuum, on the other hand. The characteristics of QHO: SQHO is spin, mQHO is mass, ΩQHO is precession frequency, dQHO is electric dipole moment, u is velocity of QHO, A is magnetic vector potential, EQHO is electric field inside the QHO, MQHO is the moment causing precession of spin SQHO

The Characteristics of Spin Supercurrent
The Properties of QHOs
Quantum Correlations
Magnetic Vector Potential
Near-Field Antenna Effect
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call