Abstract
Covalent Organic Frameworks (COFs) demonstrate promising potential in the photocatalytic synthesis of H2O2 owing to favorable light absorption, superior charge separation, and considerable surface area. However, the efficiency of H2O2 photosynthesis is impeded by insufficient O2 adsorption sites and a high reaction barrier. In this work, various metal single atoms (Fe, Co, Ni) are introduced onto covalent triazine frameworks (CTFs) with N-N coordination sites to significantly enhance O2 adsorption and optimize H2O2 synthesis. Computational findings suggest that the presence of Fe, Co, and Ni not only enhances O2 adsorption but also exerts an influence on the reaction pathway of H2O2. Significantly, Fe exhibits a distinct advantage in modulating O2 adsorption through its unique electron spin state when compared to Co and Ni, as confirmed by crystal orbital Hamilton population (COHP) analysis. Additionally, this integration of metal atoms also improves light absorption and charge separation in CTFs. The study provides strategic insight into elevating H2O2 production by incorporating tailored metal single atoms into COFs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.