Abstract

The redox behavior of iron during heating of a high-performance perovskite for ceramic oxygen separation membranes was studied by combined electron energy-loss (EELS, esp. ELNES) and Mössbauer spectroscopical in situ methods. At room temperature, the iron in ( Ba 0.5 Sr 0.5 ) ( Fe 0.8 Zn 0.2 ) O 3 - δ (BSFZ) is in a mixed valence state of 75% Fe 4 + in the high-spin state and 25% Fe 3 + predominantly in the low-spin state. When heated to 900 ∘ C , a slight reduction of iron is observed that increases the quantity of Fe 3 + species. However, the dominant occurrence is a gradual transition in the spin-state of trivalent iron from a mixed low-spin/high-spin to a pure high-spin configuration. In addition, a remarkable amount of hybridization is found in the Fe–O bonds that are highly polar rather than purely ionic. The coupled valence/spin-state transition correlates with anomalies in thermogravimetry and thermal expansion behavior observed by X-ray diffraction and dilatometry, respectively. Since the effective cationic radii depend not only on the valence but also on the spin-state, both have to be considered when estimating under which conditions a cubic perovskite will tolerate specific cations. It is concluded that an excellent phase stability of perovskite-based membrane materials demands a tailoring, which enables pure high-spin states under operational conditions, even if mixed valence states are present. The low spin-state transition temperature of BSFZ provides that all iron species are in a pure high-spin configuration already above ca. 500 ∘ C making this ceramic highly attractive for intermediate temperature applications ( 500 – 800 ∘ C ).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.