Abstract
Two homoleptic Fe(II) complexes in different spin states bearing superbasic terpyridine derivatives as ligands are investigated to determine the relationship between spin state and electrochemical/spectroscopic behavior. Antiferromagnetic coupling between a ligand-centered radical and the high-spin metal center leads to an anodic shift of the first reduction potential and results in a species that shows mixed valency with a moderately intense intervalence-charge-transfer band. The differences afforded by the different spin states extend to the electrochemical reactivity of the complexes: while the low-spin species is a precatalyst for electrocatalytic CO2 reduction and leads to the preferential formation of CO with a Faradaic efficiency of 37%, the high-spin species only catalyzes proton reduction at a modest Faradaic efficiency of approximately 20%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.