Abstract
Ensembles of neutral atoms enable state-of-the-art measurements of time, acceleration, and electromagnetic fields. Introducing entanglement among the constituent atoms offers a route to enhancing the precision of these measurements. One proposed approach to generating the requisite entanglement relies on the off-resonant optical coupling of one ground state to a highly excited electronic state. This technique, known as Rydberg dressing, enables local and dynamical control of interactions between neutral atoms. In this talk, I will present the engineering of Rydberg-dressed interactions by single-photon coupling to nP states in a cesium atomic clock. I will also present the creation of a squeezed spin state by local interactions that achieves a factor of 0.78(4) reduction in phase variance below the standard quantum limit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.