Abstract

Examination of the reactions of σ-type quinolinium-based triradicals with cyclohexane in the gas phase demonstrated that the radical site that is the least strongly coupled to the other two radical sites reacts first, independent of the intrinsic reactivity of this radical site, in contrast to related biradicals that first react at the most electron-deficient radical site. Abstraction of one or two H atoms and formation of an ion that formally corresponds to a combination of the ion and cyclohexane accompanied by elimination of a H atom ("addition-H") were observed. In all cases except one, the most reactive radical site of the triradicals is intrinsically less reactive than the other two radical sites. The product complex of the first H atom abstraction either dissociates to give the H-atom-abstraction product and the cyclohexyl radical or the more reactive radical site in the produced biradical abstracts a H atom from the cyclohexyl radical. The monoradical product sometimes adds to cyclohexene followed by elimination of a H atom, generating the "addition-H" products. Similar reaction efficiencies were measured for three of the triradicals as for relevant monoradicals. Surprisingly, the remaining three triradicals (all containing a meta-pyridyne moiety) reacted substantially faster than the relevant monoradicals. This is likely due to the exothermic generation of a meta-pyridyne analog that has enough energy to attain the dehydrocarbon atom separation common for H-atom-abstraction transition states of protonated meta-pyridynes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.