Abstract

Chirality-induced spin selectivity has been attracting extensive interest in recent years and is demonstrated in a variety of chiral molecules, all of which arise from inherent molecular chirality. Here, we first propose a theoretical model to study the spin-dependent electron transport along guanine-quadruplex (G4) DNA molecules, connected to two nonmagnetic electrodes, by considering the molecule-electrode contact and weak spin-orbit coupling. Our results indicate that the G4-DNA molecular junctions exhibit pronounced spin-selectivity effect, and the asymmetric contact-induced external chirality, instead of the inherent molecular chirality, dominates their spin filtration efficiency. Furthermore, the spin-selectivity effect is robust against the disorder and hold in a wide range of model parameters. These results could be checked by charge transport measurements and provide an alternative way to improve the spin-selectivity effect of chiral nanodevices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.