Abstract

The adsorption of oxidatively damaged DNA onto ferromagnetic substrates was investigated. Both confocal fluorescence microscopy and quartz crystal microbalance methods show that the adsorption rate and the coverage depend on the magnetization direction of the substrate and the position of the damage site on the DNA relative to the substrate. SQUID magnetometry measurements show that the subsequent magnetic susceptibility of the DNA-coated ferromagnetic film depends on the direction of the magnetic field that was applied to the ferromagnetic film as the molecules were adsorbed. This study reveals that (i) the spin and charge polarization in DNA molecules is changed significantly by oxidative damage in the G bases and (ii) the rate of adsorption on a ferromagnet, as a function of the direction of the magnetic dipole of the surface, can be used as an assay to detect oxidative damage in the DNA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.